CHAPTER 2
Quadratic Expressions and Equations
· Quadratic expressions in the form ax² + bx + c, where a, b and c are constants, a ≠ 0 and x is an unknown.
· Quadratic expressions can be formed by multiplying two linear expressions.
( x + a ) ( x + b )
= x² + bx + ax + ab
· Factorisation of Quadratic Expressions
1. ax2 + bx 3. x² + bx + c
= x ( ax + b) = ( x + m ) (x + n )
Example: Example :
3x2 + 2x x² + 3x + 2
= x ( 3x + 2) = ( x + 1 ) (x + 2 )
2. (ax)² - b² 4. ax² + bx + c
= ( ax - b) ( ax + b) = ( px + m ) ( qx + n )
Example : Example :
(2x)² - 1² 6x² + 5x + 1
= ( 2x - 1) ( 2x + 1) =( 3x + 1 ) ( 2x + 1)
We can also use the cross method to factorise quadratic expressions in the form of x² + bx + c and ax² + bx + c
Try this using the method :
1. x² + 6x + 8 |
2. 2x² + 7x + 6 |
How about this ? Can you use the same method ?
1. 5t² - 20t - 60 |
2. 7y² - 14y – 245 |
· Roots of Quadratic Equations
Finding the roots of a quadratic equation.
ax² + bx + c = 0 ( General Form )
( px + m ) ( qx + n ) = 0 ( Factorisation )
px + m = 0 qx + n = 0
x = - m x = - n
p q
1.Expand each of the following : (a) ( x + 3 ) ( x + 4 ) (b) ( x + 5 ) ( x + 6 ) (c) ( x + 2 ) ( x + 8 ) (d) ( x - 4 ) ( x - 2 ) (e) ( x - 6 ) ( x – 10 ) (f) ( x - 9 ) ( x – 12 ) (g) ( x + 7 ) ( x – 4 ) (h) ( x - 11) ( x + 13 ) 2. Factorise : (a) x ² + 10 x + 21 (b) x ² + 3 x - 18 (c) x ² - 9 x + 20 (d) x ² + 2x - 80 (e) x ² + 2 x + 63 (f) x ² - 17x + 60 (g) x ² - 12 x – 13 (h) x ² - 20 x + 75 (i) x ² - 13x – 68 (j) 2x ² + 11 x + 5 (k) 3x ² - 19 x - 14 (l) 5x ² - 37 x - 24 (m) 7x ² - 59 x - 36 (n) 6x ² + 7 x - 20 (o) 12x ² + 5x - 72 (p) 18x ² + 63x + 49 (q) 30x ² - 89 x + 24 (r) 44x ² - 163 x + 65 (s) 65x ² - 112x - 9 3. Expand each of the following : (a) ( 4x + 3 ) ( x + 5 ) (b) ( x + 6 ) ( 3x + 7 ) (c) ( 5x - 4 ) ( x – 3 ) (d) ( x - 7 ) ( 4x – 9 ) (e) ( 8x + 3 ) ( x – 6 ) (f) ( x + 5 ) ( 6x – 5 ) (g) ( 2x + 7 ) ( 5x + 9 ) (h) ( 6x -5 ) ( 4x – 7 ) (i) ( 9x + 4 ) ( 5x – 6 ) (j) ( 6 + 7x ) ( 4x – 1 ) (k) ( 9 – 10x ) ( 6x + 11 ) (l) (5 – 4x ) ( 7- 2x ) (m) ( x + 3 ) ² (n) ( x - 4 ) ² (o) ( 3x + 2 ) ² (p) ( 5 + 4x ) ² |
Maths Teacher SMKRS 2009
![]() |
|
![]() |
![]() |